
$KIN WHITE PAPER

The $KIN Token is a Real World Asset (RWA) that bridges digital assets linked to physical activities in the
beauty industry. It integrates real-world elements of the Beauty Industry into an innovative digital ecosystem,
offering holders a tangible connection to physical beauty products. The $KIN Token ecosystem is designed to
address critical problems in the beauty industry by leveraging AI and blockchain technology to provide
solutions.

The objective is to synergize AI, blockchain technology, and tangible beauty products with the $KIN Token.

As a holder of the $KIN Token, you are not just keeping pace with blockchain and crypto trends; you are
acquiring a digital asset that represents a tangible connection to real-world activities in the beauty industry.

This unique token provides considerable value by integrating real elements of the beauty world into an
innovative digital asset.

In the near future, the physical operations with the $KIN will be utilized by HAUM, a reputable skincare brand
established in 2018 in Indonesia. HAUM will leverage the $KIN Token to provide exclusive rewards to its loyal
customers, thereby fostering a unique relationship between the digital asset and the physical business in the
beauty industry, as well opportunity for other brands.

Led by the same creator as the $KIN Token, HAUM has laid a strong foundation for future growth.

The $KIN Token Ecosystem White Paper
Introduction

The $KIN Token ecosystem is designed to address critical problems in the beauty industry using AI technology.
Here's how AI & our project can solve these issues for both brands and consumers:

Addressing Key Issues in the Beauty Industry with AI

WEB3
DEVELOPMENT PROJECTS

DAPP

$KIN Wallet : A secure wallet for storing and facilitating $KIN Token transactions within
the ecosystem.
REWARDS : A rewards program where customers earn $KIN Tokens through
activities like purchasing products, engaging with the brand, and participating in
community events.
Web3 Ecommerce : An e-commerce platform leveraging blockchain technology for
transparent and secure transactions, integrated with AI-based recommendations for a
seamless shopping experience.
$KIN ReviewHub : A platform for user reviews, brand engagement, and product
ranking based on feedback, with verified reviews and dynamic ranking
$KIN TALK : Direct Chat Consultation Platform with Experts: $kinTalk allows users to
chat directly with dermatologists, skincare specialists, and lab professionals

DEFI

$KIN GrowthFund : An investment platform that provides funding for beauty industry
brands, with community-driven selection and performance tracking.
Staking : Users can stake their $KIN Tokens to earn rewards or participate in
governance. Staking provides liquidity and stability to the ecosystem.

DAO
For $kin Ecosystem sustainable.
Everyone can be part of next project decisions.

AI

$KIN AI : Is an advanced artificial intelligence system specifically designed for the
beauty industry. $KIN AI continuously evolves and learns over time, improving its
accuracy and effectiveness with each interaction (Project 24/7 CS, Food & Drug
Regulatory Platform, $KIN Market Monitoring).

PROJECT 00
Project Description Problem Solution Benefit

Wallet

A secure digital wallet
for storing and
managing $KIN
tokens.

Users need a safe
and efficient way to
store and manage
their $KIN tokens.

Provide a user-
friendly, secure digital
wallet integrated into
the DAPP.

Secure storage, easy
management of $KIN
tokens, seamless
transactions.

Rewards

A system to reward
users for various
activities within the
$KIN ecosystem.

Users need
incentives to engage
with the platform and
contribute valuable
data and feedback.

Implement a rewards
system that issues
$KIN tokens for
activities like reviews,
feedback, and
usage.

Increased user
engagement,
valuable data
collection, enhanced
community
involvement.

Staking

A mechanism for
users to stake their
$KIN tokens to earn
rewards and support
the network's
security.

Users need a way to
earn passive income
and support the
network's security.

Introduce a staking
mechanism where
users can lock up
their $KIN tokens to
earn rewards.

Passive income for
users, increased
network security,
enhanced token
value stability.

Web3 Ecommerce

A decentralized
marketplace for
beauty products
using $KIN tokens.

Users need a
transparent, secure,
and efficient

Develop a Web3
ecommerce platform
that uses blockchain
technology for
transactions.

Transparent
transactions, secure
payments, enhanced
user trust, and
efficient commerce.

PROJECT $KIN GrowthFund: Empowering Brand Expansion
Integration Mechanism Benefits

Investment Platform: $KIN
GrowthFund is an investment
platform that provides funding to
beauty industry brands needing
capital to scale up their business
and sales.
Selection Process: Brands can
apply for funding through the
platform, presenting their
business plans, growth
strategies, and funding
requirements.
Investment Mechanism: Selected
brands receive investment in the
form of $KIN Tokens, which they
can use for various growth
initiatives such as marketing,
product development, and
expanding distribution channels.

1. Application Submission: Brands
submit their funding applications,
detailing their business plans and
growth strategies.

2. Funding Allocation: Based on the
votes, funds are allocated to the
selected brands.

3. Performance Tracking: The
platform tracks the performance
of the funded brands, providing
regular updates to the community
on their progress and impact.

*Further plan Investor Voting: $KIN
Token holders review the applications
and vote for the brands they want to
support.

Brand Growth: Provides essential
funding to beauty industry
brands, enabling them to scale
their operations and increase
sales.
Community Engagement:
Involves the $KIN community in
the investment process, fostering
a sense of ownership and
engagement.
Market Expansion: Helps brands
expand their market reach and
improve their product offerings,
benefiting both the brands and
consumers.

PROJECT 24/7 Customer Support and Product Explanation
Integration :

Implement AI that can provide instant and accurate responses to customer inquiries 24/7. These AI can be
trained on the brand's product portfolio and skincare or beauty product knowledge base to offer
personalized recommendations and detailed product explanations.

Problem AI Solution Benefits
Brands often struggle to provide
consistent, round-the-clock
support to answer customer
queries about their skincare or
beauty products.

AI-Powered: Implement AI that
can provide instant and accurate
responses to customer inquiries
24/7. These AI can be trained on
the brand's product knowledge
and skincare or beauty
knowledge base to offer
personalized recommendations
and detailed product
explanations.

Continuous Support: Ensures
customers always have access to
support, enhancing customer
satisfaction and trust.

Customers frequently seek
detailed explanations about
product benefits, ingredients, and
suitability for their skin concerns.

Virtual Assistants: AI virtual
assistants can guide customers
through product features, usage
instructions, and benefits,
ensuring they have all the
information they need to make
informed decisions.

Continuous Support: Ensures
customers always have access to
support, enhancing customer
satisfaction and trust.

Customers often feel
overwhelmed by the vast array of
skincare or beauty products
available and are unsure which
products are best suited for their
specific skin needs.

Personalized Product
Recommendations: AI algorithms
analyze consumer data, including
skin type, concerns, and
preferences, to offer personalized
skincare or beauty product
recommendations

Enhanced Decision-Making:
Simplifies the process of
choosing skincare or beauty
products, reducing confusion and
improving satisfaction.

PROJECT Food & Drug Regulatory Registration Consultancy:
Ensuring Compliance and Facilitating Market Access

Integration :

Comprehensive guidance on Food & Drug Regulatory approval, export and import assistance, and halal
certification support.
AI-driven solutions streamline documentation and compliance processes.

Problem AI Solution Benefits
Regulatory Complexity: Individuals or
new businesses looking to create
skincare or beauty products often
lack the knowledge and expertise to
navigate the complex Food & Drug
Regulatory product registration
process.

Comprehensive Guidance: The Food
& Drug Regulatory registration
consultancy helps individuals or
businesses looking to create skincare
or beauty products navigate the
complex process of obtaining Food &
Drug Regulatory approval. This
includes information related to
regulatory standards, documentation,
and submission processes.

Regulatory Compliance: Ensures that
all products meet Food & Drug
Regulatory regulatory standards,
building trust and credibility with
consumers and industry partners.

AI-Driven Solutions: AI assists in
preparing and submitting required
documentation, streamlining the
compliance process, and providing
real-time updates on regulatory
changes.

Efficiency and Accuracy: AI-driven
solutions reduce errors and
streamline the documentation
process, saving time and resources
for businesses.

Export and Import Challenges:
Existing skincare or beauty brands
may struggle with exporting their
products internationally or importing
foreign products into Indonesia.

Export and Import Assistance:
Provides guidance for brands looking
to export their products internationally
or import foreign skincare or beauty
products into Indonesia.

Market Expansion: Facilitates the
entry of skincare or beauty products
into new markets through export and
import guidance, expanding business
opportunities.

Halal Certification: Ensuring products
meet halal standards can be
challenging without proper guidance.

Halal Certification Support: Assists in
the process of obtaining halal
certification, ensuring products meet
the required standards for halal
markets.

Halal Certification: Opens access to
halal markets by ensuring products
meet halal certification requirements.

PROJECT $KIN ReviewHub: Enhancing Transparency and Value

Integration :

A platform for user reviews, brand engagement, and product ranking based on feedback.
Verified reviews and a dynamic ranking system increase transparency and trust.

Problem Solution Features Benefits
Consumer Confusion:
Consumers find it
difficult to choose the
right products or keep
up with trends due to
the overwhelming
number of options
available and the lack of
reliable comparative
information.

User Reviews: $KIN
Token holders and
users can leave reviews
and comments on
skincare or beauty
products, providing
valuable feedback to
other consumers and
brands.

Verified Reviews: Only
verified users or $KIN
Token holders can
leave reviews, ensuring
authenticity and
reducing spam.
Incentives: Users can
earn $KIN Tokens for
leaving detailed and
helpful reviews,
encouraging quality
contributions.

Transparency: Provides
a transparent platform
where users can share
honest feedback and
experiences, helping
others make informed
decisions.

Brand Engagement:
Brands can engage
with reviewers, respond
to feedback, and use
insights to improve their
products.

Community Interaction:
Users can upvote or
respond to reviews,
fostering a community
of engaged skincare or
beauty enthusiasts.

Brand Value: Helps
brands increase their
product value by
showcasing positive
reviews and responding
to customer feedback.

Product Ranking: The
platform ranks products
based on the number
and quality of reviews,
providing a transparent
and dynamic view of
product popularity and
effectiveness.

Rating System:
Products are rated
based on user
feedback, with detailed
comments and ratings
for various aspects
such as effectiveness,
ingredients, and value
for money.

Market Insights: Brands
gain valuable insights
into consumer
preferences and
product performance,
aiding in product
development and
marketing strategies.

Guidelines and Trends:
The platform offers
guidelines to help
consumers choose
products based on
reviews and trends,
making it easier to
compare products and
stay informed.

Guideline Tools: Tools
and filters to help users
compare products
easily and stay updated
on the latest trends.

Consumer
Empowerment:
Empowers consumers
with reliable information,
making it easier to
choose the right
products and stay
informed about trends.

PROJECT $KIN Market Monitoring

Integration :

AI aggregates and analyzes data contributed for beauty Industry Market Monitoring.

Problem AI Solution Benefits

Limited Sourcing: Traditional
product development processes
in the beauty industry can be
slow in regards of trend search,
which a lot of time of desktop
research.

AI can provide Skincare/beauty
trend update such as information
of any new and exist skincare or
beauty product, to update brand
what’s happening without manual
research.

Stay ahead of Market Trends with
more faster.

Ineffective Market Review
Monitoring: Brand need to do
desktop research due to specific
product opportunity by
ingredients which take more time
to sort which are similar product
with specific details like price,
usp, etc.

AI can provide list of competitor
product based on hero
ingredient, details ingredients,
USP information, price and
product size variations details.

Effective to explore an
opportunity, define red/blue
ocean product, or learn from
competitor. Brand able to define
the opportunity of new product or
market review with details
information such as ingredient,
price, USP, etc.

Sourcing data update of beauty
industry update by real skincare
or beauty enthusiast, they are
able to contribute every single
skincare or beauty product to
input and the details

Real data to use for analyzing
market.

PROJECT $kinTalk : Direct Skincare Consultation Platform

Integration :

Direct Chat Consultation Platform with Experts: $kinTalk allows users to chat directly with dermatologists,
skincare specialists, and lab professionals. This ensures users receive personalized, accurate, and reliable
information tailored to their specific needs.

Problem AI Solution Benefits

Lack of Knowledge: Many
consumers lack the knowledge to
choose the right skincare
products and routines for their
specific needs.

Direct Chat Consultation Platform
with Experts: $kinTalk allows
users to chat directly with
dermatologists, skincare
specialists, and lab professionals.
This ensures users receive
personalized, accurate, and
reliable information tailored to their
specific needs.

Immediate Assistance: Users can
get real-time answers to their
skincare questions and concerns.

Misinformation: Consumers often
encounter conflicting advice
about skincare, making it difficult
to find reliable information.

Personalized Advice: Customized
recommendations and solutions
based on individual skin types
and conditions.

Access to Experts: There is
currently no dedicated platform
that connects consumers directly
with dermatologists, skincare
specialists, and lab professionals.

Accessibility: Makes expert
advice more affordable and
accessible to a wider audience.

The $KIN Token Ecosystem

Channel Description Fee
Subscription Model
for $KIN AI

Is an advanced artificial intelligence
system specifically designed for the
beauty industry. $KIN AI continuously
evolves and learns over time,
improving its accuracy and
effectiveness with each interaction.
(24/7, Food & Drug Regulatory
CONSULTANT, $KIN MARKET
MONITORING)

Basic Free Tier: Limited recommendations and
features.
Premium Subscription: In-depth analysis,
personalized routines, exclusive content for a
monthly or annual fee.

Affiliate Fees from
Web3 Ecommerce
Platform

Generates revenue from product
purchases and brand listings.

Commission: Earns a commission on products
purchased.

$KIN WALLET Applies small fees for transactions and
withdrawals to ensure secure handling
of $KIN Tokens.

Operational Fees: A small fee applied for
transactions and withdrawals made through the
$KIN Wallet.

Platform Fees for
$KIN ReviewHub

Brand engagement Promoted Advertising Listing: Brands can pay for
promoted listings to highlight their products

$KIN GrowthFund Provides funding for beauty industry
brands

Investors purchase $KIN Tokens to participate in
funding opportunities through the $KIN GrowthFund.
Brands that receive funding are required to commit to a
buyback agreement, where they allocate a portion of
their profits or revenue to repurchase $KIN Tokens from
the market. This buyback process, facilitated by
transparent financial reporting and smart contracts,
ensures continuous engagement and value creation
within the ecosystem. The repurchased tokens are
then reintegrated into the $KIN treasury or used for
staking rewards, enhancing the token's value and
supporting the ecosystem's sustainability.

Fee Generation within the Ecosystem
The $KIN Token ecosystem is designed not only to provide value but also to generate sustainable revenue
through multiple channels:

Tokenomic

Project Name: $KINSPACE
Token Name: $KIN

Symbol: $KIN

Token Contract Address: 0x176f911705ef58DC54a47969656baeE22275c110

Decimals: 18

Contract Ownership: Renounced YES

Launch Date: 02/02/24

Total Supply: 1,000,000,000

50% PUBLIC

30% DEVELOPMENT &
INNOVATION

Market Growth : 40%
This allocation aims to build a strong and
engaged community, marketing campaigns,
staking rewards, and governance
incentives.

Development & Innovation: 30%
Token will be allocated for developers and
innovations. This portion incentivizes those
who contribute to the project’s
development, innovation, and feature
enhancement.

Real / Physical Business: 30%
15% STAKEHOLDER

5% REWARDS COMMUNITY

Basic Information

To ensure the security, integrity, and trustworthiness of the SKINSPACE ecosystem, we have implemented
several robust security measures. These measures are designed to protect the interests of our token holders,
stakeholders, and the community, while also addressing concerns about potential rug pulls and ensuring the
long-term sustainability of the project.

Token Security and Trust Measures

Multi Signature Wallets
Multi Signature Wallets for Enhanced Security
Purpose: Multi Signature wallets are used to manage staked tokens and project funds, providing an additional
layer of security and transparency. This mechanism requires multiple approvals for any transactions,
significantly reducing the risk of unauthorized access and misuse of funds.

Key Features of Multi Signature Wallets:
Multiple Approvals: Transactions from multi signature wallets require the approval of multiple trusted

parties. This means that no single individual has control over the funds, enhancing
security and trust.

Decentralized Control: By distributing control among several parties, multisignature wallets prevent unilateral
actions and reduce the risk of fraud.

Transparent Transactions: All transactions from multi signature wallets are publicly recorded on the blockchain,
providing transparency and accountability.

Reduced Risk of Hacking: The need for multiple approvals makes it significantly more difficult for hackers to
compromise the wallet and access funds.

Implementation in SKINSPACE:
Stakeholder Tokens: All staked tokens from stakeholders are managed through multi signature wallets.

This ensures that any transaction involving these tokens requires multiple approvals,
thereby safeguarding the interests of stakeholders.

Development & Innovation
Funds:

Funds allocated for development, innovation, and business expansion are also
managed using multi signature wallets. This guarantees that these critical resources
are protected and used appropriately.

$KIN Token Ecosystem Roadmap 2023 - 2027
Phase 1: Preparation and Foundation (Q3 2023 - Q1 2024)
2023 - 2024 I Q3 - Q4:
Preparation and Smart Contract Development

Conduct extensive market research to identify target demographics, competitor analysis, and market
opportunities.
Begin the development of smart contracts for the $KIN Token, ensuring security and efficiency in
transactions.

2024 I Q1:
ICO Planning and Marketing Strategy

Develop a comprehensive plan for the ICO, including Tokenomics, pricing, and distribution strategy.
Formulate a robust marketing strategy to raise awareness about the project and attract potential investors.
Establish initial partnerships with key stakeholders and influencers in the beauty industry.

Phase 2: Initial Launch and Community Building (Q2 2024 - Q3 2024)
2024 I Q2 :
ICO Launch and Community Building

Launch the ICO campaign, leveraging marketing efforts to reach a wide audience and encourage
participation.
Build an active and engaged community around the $KIN Token project through social media, forums, and
community events.
Conduct regular updates and communication with the community to keep them informed about project
developments.
Initiate a presale ICO campaign to attract early investors and supporters, offering exclusive bonuses and
discounts.
Conduct targeted marketing campaigns to promote the presale ICO and generate interest among potential
investors.
Ensure compliance with relevant regulations and legal requirements for conducting a presale ICO, including
KYC/AML procedures.

2024 I Q3 :
Career Hiring and Expansion

Expand the team by hiring skilled professionals in key areas such as development, marketing, and
operations.
Develop strategic partnerships with additional beauty brands and industry players to expand the project's
reach.
Continue community engagement efforts to foster a strong sense of belonging and loyalty among
supporters.

Phase 3: Building the Core Ecosystem (Q4 2024 - Q1 2025)
2024 I Q4 :
$KIN Wallet

Launch the secure $KIN Wallet for storing and transacting $KIN Tokens.
Ensure user-friendly features and robust security measures for safe transactions.

Rewards
Apply initiate rewards with HAUM brand.

Phase 4: Launching Key Projects (2025 - 2026)
2025 I Q2:
AI 24/7

Launch the AI-based $KIN analysis tool to provide personalized skincare or beauty recommendations to
users.
Integrate AI capabilities to analyze user data and offer tailored product suggestions.

2025 I Q3:
Web3 Commerce Platform

Official launch of the Web3 commerce platform, allowing users to purchase skincare or beauty products
using $KIN Tokens.
Implement blockchain technology to ensure transparent and secure transactions.

$KIN GrowthFund
Launch the $KIN GrowthFund to provide funding for beauty brands needing capital to scale their business.
Implement community-driven selection and performance tracking.

2025 I Q4:
Food & Drug Regulatory Registration Consultancy

Expand the Food & Drug Regulatory registration consultancy to provide guidance for creating skincare or
beauty products, exporting, importing, and obtaining halal certification.
Utilize AI to streamline documentation and compliance processes.

Exchange Listing and Project Building
Secure listings on major cryptocurrency exchanges to increase liquidity and accessibility of the $KIN Token.
Focus on building the foundation for project expansion and development, including further partnerships,
platform enhancements, and ecosystem growth.
Prepare for the official launch of the Web3 commerce platform, AI-based $KIN analysis tool, and $KIN
Wallet in the upcoming phases.

Phase 5: Expanding the Ecosystem (2026)
2026 I Q1:
$KIN ReviewHub

Launch the $KIN ReviewHub for product reviews, brand engagement, and product ranking based on
feedback.
Implement features for verified reviews, rating systems, and community interaction.

2026 I Q3:
$KIN Market Monitoring

Launch the $KIN market monitoring for provide data in beauty industry.

2026 I Q4:
SkinTalk: Direct Skincare Consultation Platform

Launch the SkinTalk platform, enabling users to chat directly with dermatologists, skincare specialists, and
lab professionals.
Integrate AI-based preliminary skincare advice tools to assist users before connecting them to experts.
Develop a subscription and fee-based model for consultations and expert interactions.

Phase 6: Scaling and Innovation (2026 - 2027)

2027 I Q1:
Future Developments and Scaling

Focus on continuous improvement and scaling of existing projects.
Explore new opportunities and innovations within the $KIN Token ecosystem.

SMART CONTRACT
 // SPDX-License-Identifier: MIT

pragma solidity ^0.8.2;

abstract contract Context {
 function _msgSender() internal view virtual returns (address) {
 return msg.sender;
 }

 function _msgData() internal view virtual returns (bytes calldata) {
 return msg.data;
 }
}
interface IERC20 {
 function totalSupply() external view returns (uint256);
 function balanceOf(address account) external view returns (uint256);
 function transfer(address recipient, uint256 amount) external returns (bool);
 function allowance(address owner, address spender) external view returns (uint256);
 function approve(address spender, uint256 amount) external returns (bool);
 function transferFrom(
 address sender,
 address recipient,
 uint256 amount
) external returns (bool);
 event Transfer(address indexed from, address indexed to, uint256 value);
 event Approval(address indexed owner, address indexed spender, uint256 value);
}
library Address {
 function isContract(address account) internal view returns (bool) {
 uint256 size;
 assembly {
 size := extcodesize(account)
 }
 return size > 0;
 }
 function sendValue(address payable recipient, uint256 amount) internal {
 require(address(this).balance >= amount, "Address: insufficient balance");

 (bool success,) = recipient.call{value: amount}("");
 require(success, "Address: unable to send value, recipient may have reverted");
 }
 function functionCall(address target, bytes memory data) internal returns (bytes memory) {
 return functionCall(target, data, "Address: low-level call failed");
 }
 function functionCall(
 address target,
 bytes memory data,
 string memory errorMessage
) internal returns (bytes memory) {
 return functionCallWithValue(target, data, 0, errorMessage);
 }
 function functionCallWithValue(
 address target,
 bytes memory data,
 uint256 value
) internal returns (bytes memory) {
 return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
 }
 function functionCallWithValue(
 address target,

 bytes memory data,
 uint256 value,
 string memory errorMessage
) internal returns (bytes memory) {
 require(address(this).balance >= value, "Address: insufficient balance for call");
 require(isContract(target), "Address: call to non-contract");

 (bool success, bytes memory returndata) = target.call{value: value}(data);
 return verifyCallResult(success, returndata, errorMessage);
 }
 function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
 return functionStaticCall(target, data, "Address: low-level static call failed");
 }
 function functionStaticCall(
 address target,
 bytes memory data,
 string memory errorMessage
) internal view returns (bytes memory) {
 require(isContract(target), "Address: static call to non-contract");

 (bool success, bytes memory returndata) = target.staticcall(data);
 return verifyCallResult(success, returndata, errorMessage);
 }
 function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
 return functionDelegateCall(target, data, "Address: low-level delegate call failed");
 }
 function functionDelegateCall(
 address target,
 bytes memory data,
 string memory errorMessage
) internal returns (bytes memory) {
 require(isContract(target), "Address: delegate call to non-contract");

 (bool success, bytes memory returndata) = target.delegatecall(data);
 return verifyCallResult(success, returndata, errorMessage);
 }
 function verifyCallResult(
 bool success,
 bytes memory returndata,
 string memory errorMessage
) internal pure returns (bytes memory) {
 if (success) {
 return returndata;
 } else {
 if (returndata.length > 0) {
 assembly {
 let returndata_size := mload(returndata)
 revert(add(32, returndata), returndata_size)
 }
 } else {
 revert(errorMessage);
 }
 }
 }
}
abstract contract Ownable is Context {
 address private _owner;

 event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
 constructor() {
 _setOwner(_msgSender());
 }

 function owner() public view virtual returns (address) {
 return _owner;
 }
 modifier onlyOwner() {
 require(owner() == _msgSender(), "Ownable: caller is not the owner");
 _;
 }
 function renounceOwnership() public virtual onlyOwner {
 _setOwner(address(0));
 }
 function transferOwnership(address newOwner) public virtual onlyOwner {
 require(newOwner != address(0), "Ownable: new owner is the zero address");
 _setOwner(newOwner);
 }

 function _setOwner(address newOwner) private {
 address oldOwner = _owner;
 _owner = newOwner;
 emit OwnershipTransferred(oldOwner, newOwner);
 }
}
contract ERC20$kin is IERC20, Ownable {

 using Address for address;

 mapping (address => uint256) private _rOwned;
 mapping (address => uint256) private _tOwned;
 mapping (address => mapping (address => uint256)) private _allowances;

 mapping (address => bool) private _isExcluded;
 address[] private _excluded;

 uint256 private constant MAX = ~uint256(0);
 uint256 private _tTotal;
 uint256 private _rTotal;
 uint256 private _tFeeTotal;
 uint8 public _feeDivider;

 string private _name;
 string private _symbol;
 uint8 private _decimals;

 constructor (address owner_, string memory name_, string memory symbol_, uint8 decimals_, uint256 supply_, uint8 feeDivider_) Ownable() {

 require(feeDivider_ > 0, "ERC20 Macadamia: divider has to be grater than zero");
 require(decimals_ < 19, "ERC20 Macadamia: decimals has to be between 0 and 18");
 require(supply_ > 0, "ERC20 Macadamia: supply has to be grater than zero");

 name = name;
 symbol = symbol;
 decimals = decimals;
 feeDivider = feeDivider;
 tTotal = supply;
 _rTotal = (MAX - (MAX % _tTotal));
 rOwned[owner] = _rTotal;
 emit Transfer(address(0), owner_, _tTotal);

 transferOwnership(owner_);

 }

 function name() external view returns (string memory) {

 return _name;
 }

 function symbol() external view returns (string memory) {
 return _symbol;
 }

 function decimals() external view returns (uint8) {
 return _decimals;
 }

 function totalSupply() external view override returns (uint256) {
 return _tTotal;
 }

 function balanceOf(address account) external view override returns (uint256) {
 if (_isExcluded[account]) return _tOwned[account];
 return tokenFromReflection(_rOwned[account]);
 }

 function transfer(address recipient, uint256 amount) external override returns (bool) {
 _transfer(_msgSender(), recipient, amount);
 return true;
 }

 function allowance(address owner, address spender) external view override returns (uint256) {
 return _allowances[owner][spender];
 }

 function approve(address spender, uint256 amount) external override returns (bool) {
 _approve(_msgSender(), spender, amount);
 return true;
 }

 function transferFrom(address sender, address recipient, uint256 amount) external override returns (bool) {
 _transfer(sender, recipient, amount);
 _approve(sender, _msgSender(), _allowances[sender][_msgSender()] - amount);
 return true;
 }

 function increaseAllowance(address spender, uint256 addedValue) external virtual returns (bool) {
 _approve(_msgSender(), spender, _allowances[_msgSender()][spender] + addedValue);
 return true;
 }

 function decreaseAllowance(address spender, uint256 subtractedValue) external virtual returns (bool) {
 _approve(_msgSender(), spender, _allowances[_msgSender()][spender] - subtractedValue);
 return true;
 }

 function isExcluded(address account) external view returns (bool) {
 return _isExcluded[account];
 }

 function totalFees() external view returns (uint256) {
 return _tFeeTotal;
 }

 function reflect(uint256 tAmount) external {
 address sender = _msgSender();
 require(!_isExcluded[sender], "Excluded addresses cannot call this function");
 (uint256 rAmount,,,,) = _getValues(tAmount);

 _rOwned[sender] = _rOwned[sender] - rAmount;
 _rTotal = _rTotal - rAmount;
 _tFeeTotal = _tFeeTotal + tAmount;
 }

 function reflectionFromToken(uint256 tAmount, bool deductTransferFee) external view returns(uint256) {
 require(tAmount <= _tTotal, "Amount must be less than supply");
 if (!deductTransferFee) {
 (uint256 rAmount,,,,) = _getValues(tAmount);
 return rAmount;
 } else {
 (,uint256 rTransferAmount,,,) = _getValues(tAmount);
 return rTransferAmount;
 }
 }

 function tokenFromReflection(uint256 rAmount) public view returns(uint256) {
 require(rAmount <= _rTotal, "Amount must be less than total reflections");
 uint256 currentRate = _getRate();
 return rAmount / currentRate;
 }

 function excludeAccount(address account) external onlyOwner() {
 require(!_isExcluded[account], "Account is already excluded");
 if(_rOwned[account] > 0) {
 _tOwned[account] = tokenFromReflection(_rOwned[account]);
 }
 _isExcluded[account] = true;
 _excluded.push(account);
 }

 function includeAccount(address account) external onlyOwner() {
 require(_isExcluded[account], "Account is already included");
 for (uint256 i = 0; i < _excluded.length; i++) {
 if (_excluded[i] == account) {
 _excluded[i] = _excluded[_excluded.length - 1];
 _tOwned[account] = 0;
 _isExcluded[account] = false;
 _excluded.pop();
 break;
 }
 }
 }

 function _approve(address owner, address spender, uint256 amount) private {
 require(owner != address(0), "ERC20: approve from the zero address");
 require(spender != address(0), "ERC20: approve to the zero address");

 _allowances[owner][spender] = amount;
 emit Approval(owner, spender, amount);
 }

 function _transfer(address sender, address recipient, uint256 amount) private {
 require(sender != address(0), "ERC20: transfer from the zero address");
 require(recipient != address(0), "ERC20: transfer to the zero address");
 require(amount > 0, "Transfer amount must be greater than zero");
 if (_isExcluded[sender] && !_isExcluded[recipient]) {
 _transferFromExcluded(sender, recipient, amount);
 } else if (!_isExcluded[sender] && _isExcluded[recipient]) {
 _transferToExcluded(sender, recipient, amount);
 } else if (!_isExcluded[sender] && !_isExcluded[recipient]) {
 _transferStandard(sender, recipient, amount);

 } else if (_isExcluded[sender] && _isExcluded[recipient]) {
 _transferBothExcluded(sender, recipient, amount);
 } else {
 _transferStandard(sender, recipient, amount);
 }
 }

 function _transferStandard(address sender, address recipient, uint256 tAmount) private {
 (uint256 rAmount, uint256 rTransferAmount, uint256 rFee, uint256 tTransferAmount, uint256 tFee) = _getValues(tAmount);
 _rOwned[sender] = _rOwned[sender] - rAmount;
 _rOwned[recipient] = _rOwned[recipient] + rTransferAmount;
 _reflectFee(rFee, tFee);
 emit Transfer(sender, recipient, tTransferAmount);
 }

 function _transferToExcluded(address sender, address recipient, uint256 tAmount) private {
 (uint256 rAmount, uint256 rTransferAmount, uint256 rFee, uint256 tTransferAmount, uint256 tFee) = _getValues(tAmount);
 _rOwned[sender] = _rOwned[sender] - rAmount;
 _tOwned[recipient] = _tOwned[recipient] + tTransferAmount;
 _rOwned[recipient] = _rOwned[recipient] + rTransferAmount;
 _reflectFee(rFee, tFee);
 emit Transfer(sender, recipient, tTransferAmount);
 }

 function _transferFromExcluded(address sender, address recipient, uint256 tAmount) private {
 (uint256 rAmount, uint256 rTransferAmount, uint256 rFee, uint256 tTransferAmount, uint256 tFee) = _getValues(tAmount);
 _tOwned[sender] = _tOwned[sender] - tAmount;
 _rOwned[sender] = _rOwned[sender] - rAmount;
 _rOwned[recipient] = _rOwned[recipient] + rTransferAmount;
 _reflectFee(rFee, tFee);
 emit Transfer(sender, recipient, tTransferAmount);
 }

 function _transferBothExcluded(address sender, address recipient, uint256 tAmount) private {
 (uint256 rAmount, uint256 rTransferAmount, uint256 rFee, uint256 tTransferAmount, uint256 tFee) = _getValues(tAmount);
 _tOwned[sender] = _tOwned[sender] - tAmount;
 _rOwned[sender] = _rOwned[sender] - rAmount;
 _tOwned[recipient] = _tOwned[recipient] + tTransferAmount;
 _rOwned[recipient] = _rOwned[recipient] + rTransferAmount;
 _reflectFee(rFee, tFee);
 emit Transfer(sender, recipient, tTransferAmount);
 }

 function _reflectFee(uint256 rFee, uint256 tFee) private {
 _rTotal = _rTotal - rFee;
 _tFeeTotal = _tFeeTotal + tFee;
 }

 function _getValues(uint256 tAmount) private view returns (uint256, uint256, uint256, uint256, uint256) {
 (uint256 tTransferAmount, uint256 tFee) = _getTValues(tAmount);
 uint256 currentRate = _getRate();
 (uint256 rAmount, uint256 rTransferAmount, uint256 rFee) = _getRValues(tAmount, tFee, currentRate);
 return (rAmount, rTransferAmount, rFee, tTransferAmount, tFee);
 }

 function _getTValues(uint256 tAmount) private view returns (uint256, uint256) {
 uint256 tFee = tAmount / _feeDivider;
 uint256 tTransferAmount = tAmount - tFee;
 return (tTransferAmount, tFee);
 }

 function _getRValues(uint256 tAmount, uint256 tFee, uint256 currentRate) private pure returns (uint256, uint256, uint256) {
}

 uint256 rAmount = tAmount * currentRate;
 uint256 rFee = tFee * currentRate;
 uint256 rTransferAmount = rAmount - rFee;
 return (rAmount, rTransferAmount, rFee);
 }

 function _getRate() private view returns(uint256) {
 (uint256 rSupply, uint256 tSupply) = _getCurrentSupply();
 return rSupply / tSupply;
 }

 function _getCurrentSupply() private view returns(uint256, uint256) {
 uint256 rSupply = _rTotal;
 uint256 tSupply = _tTotal;
 for (uint256 i = 0; i < _excluded.length; i++) {
 if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return (_rTotal, _tTotal);
 rSupply = rSupply - _rOwned[_excluded[i]];
 tSupply = tSupply - _tOwned[_excluded[i]];
 }
 if (rSupply < _rTotal / _tTotal) return (_rTotal, _tTotal);
 return (rSupply, tSupply);
 }
}

